Contents

3Script Behaviour


3Core Script Functions


3beep


3clear


3enterHighPerfMode


3exitHighPerfMode


3flashWindow


4getClientVersion


4getConfigValue


4getOS


4getTime


4httpGet


5isConnected


5load


5playSound


5print


6println


6register_command


6register_event


7register_timer


8send


8sendln


8setConfigValue


8setIcon


8setPasswordInput


9setWindowTitle


9showWindow


9unregister_command


9unregister_event


9unregister_timer


9Currsong Plugin Script Functions


9getCurrSong




Script Behaviour

Any callback function that causes errors by passing invalid parameters will be removed from the client’s callback list. The script must be reloaded, or the callback reregistered to add the callback again. Any errors will be reported in the client’s output window.
Core Script Functions

beep
Parameters:

· None

Returns:

· Nothing.

Remarks:

Play the standard Windows “Beep” audio.

clear
Parameters:

· None

Remarks:

Clears the output window of the client.
enterHighPerfMode
Parameters:

· None

Remarks:

Enter high performance mode. When the client is in high performance mode, the client is ticked at maximum speed, instead of the usual 100ms. This allows time critical functions like ping to be used. High performance mode is reference counted, so every call to enterHighPerfMode should be matched by a call to exitHighPerfMode.
exitHighPerfMode
Parameters:

· None

Remarks:

Exit high performance mode. For details, see enterHighPerfMode.
flashWindow
Parameters:

· None

Returns:

· Nothing.

Remarks:

Flash the client window until it is focused again. If the window is already focused, this function has no effect.

getClientVersion
Parameters:
· None

Returns:

· String: The full client version string.

Remarks:

This function returns the version of the client. E.g. “DruinkClient v2 Version 1.0 (Beta)”

getConfigValue
Parameters:

· String: Config key
Returns:

· String: Config value
Remarks:

Reads a value from the config file.
getOS
Parameters:
· None

Returns:

· String: The user’s operating system as a string.

Remarks:

This function returns the user’s operating system version as a string; E.g. “Windows XP Professional”.

getTime
Parameters:
· String: Format
Returns:

· String: The user’s operating system as a string.

Remarks:

This function returns the current time, formatted according to the format string. The format string can include any values that PHP’s date() function can take apart from the ISO-8601 type arguments, and the ‘B’, ‘u’, ‘e’, ‘O’, ‘P’, ‘T’, and ‘Z’ arguments. For example, the format string “l jS F Y” may return “Thursday 8th November 2007”.

httpGet
Parameters:
· String: Page to get

· String: Callback function name
· String: Filename to store content in (Optional)
Returns:

· Nothing
Remarks:

Reads a page from the web page specified in the first parameter, and calls the specified callback function when the read is complete. The page name may contain a port, and should be in the standard URL format, e.g. http://foo.com:1234/pies.html. The callback function should take 4 parameters as follows:
· String: Address that was passed to httpGet

· Integer: HTTP response code (E.g. 200, 404) 

· String: HTTP header

· String: Page content 
· String: Error message, or an empty string if there was no error.

If two requests for the same page with the same callback function are issued, the second request will be silently ignored.

If a filename was specified in the call to httpGet, then the Page content parameter will instead be set to the filename containing the web page contents.

This function will only read the first 1MB of data, any further data will be ignored. This function will strip out ASCII 0 bytes from the returned data, as these cannot be displayed.
isConnected
Parameters:

· None

Returns:

· Boolean: True if the client is connected to a remote server, else false.

Remarks:

None.

load
Parameters:

· String: script file to load
Remarks:

Loads and executes the specified script. This function can be used to include other scripts into the current script.
playSound
Parameters:

· String: Filename to play

Returns:

· Nothing.

Remarks:

Plays a WAV audio file located on the users machine.

print
Parameters:

· String: text to output
Remarks:

Outputs text to the client output window. Text can contain valid TA2 tags, which will be parsed into the appropriate text format commands. You will usually want to append a CRLF to the end of the string to prevent the next line being appended, or use println
println
Parameters:

· String: text to output
Remarks:

Exactly the same as print(), except this function auto appends a CRLF.
register_command
Parameters:

· String: command name
· String: callback function name

Remarks:

Registers a command with the client application. Any combination of characters except for the space and forwards slash character are valid for a command name. When the user types the command in the client input box (preceded by a forwards slash), the callback function will be called. If multiple callbacks are registered for one command, only the first one registered will be called. The command can be unregistered with unregister_command.
register_event
Parameters:

· String: event name

· String: callback function name

Remarks:

register_event is used to register a script function as a callback in response to an event. When the specified event occurs, the callback function specified will be called. Several callback functions can be registered for one event, and they will be called in the order that they were registered in. register_event is typically invoked from the global scope, causing it to be executed when the script file is loaded. Call unregister_event to remove the callback. The event name can be one of the following values (Case insensitive):
· onPreParse

Called just after the user hits Enter in the input box, before any processing has been done on the input. The callback function will receive one parameter; the contents of the input box. The string passed to the function may consist of multiple lines of text, and will contain a CRLF ending for each line. One parameter should be returned, being the string that the client should use as user input. If no parameter is returned, the input is dropped. A “dummy” function would just return the string passed to it. The function can chose not to return a parameter, which has the same effect as returning an empty string.
· onSendLine
Called once for each line of text in the input box, after any commands are parsed from the string. The callback function will receive one parameter; the line of text being sent. This line of text is terminated by a CRLF. One parameter should be returned, being the string that the client should use as user input. A “dummy” function would just return the string passed to it. The onSendLine event will never be triggered if the line starts with /load. This prevents scrips overloading the load script functionality via onSendLine. It is still possible via onPreParse, however.

· onConnected

Called just after the client connects to a server. The callback function will not receive any parameters, and should not return any. One use for this function is for providing auto-login support for MUD servers.

· onConnectFailed

Called just after a connection attempt to a server fails. The callback function will not receive any parameters, and should not return any. One use for this function is for providing auto-reconnect support for MUD servers.

· onDisconnect

Called just after a connection to a server is dropped. The callback function will receive one parameter; a Boolean indicating if the disconnect was user initiated or not. If the parameter is true, the disconnect was caused by a /disconnect command. Otherwise, the disconnect was caused by the network layer. The function should not return any parameters. One use for this function is for providing auto-reconnect support for MUD servers.

· onTick

Called every update tick. The callback function will not receive any parameters, and should not return any. Note that for performance issues it is preferable to register a timer function over onTick, unless the callback must be executed every client tick.

· onReceive

Called whenever new data is received from the server. The callback function will receive one parameter; a string containing the raw data received from the server. The callback should return one parameter; the text to pass back to the client. A dummy function would simply return the string that it received. The function can chose not to return a parameter, which has the same effect as returning an empty string.

· onReceivePML

Called whenever a PML tag has been parsed from the data received from the server. The callback function will receive one parameter; a string containing the PML tag. The callback should not return any parameters.

register_timer
Parameters:

· Integer: timer interval in milliseconds

· String: callback function name

Remarks:

register_timer is used to register a script function as a callback that will be called at regular intervals. The script function specified by the callback function will be called as often as indicated by the first parameter. The function will continue to be called until it is unregistered by a call to unregister_timer. The minimum timer delay is 100ms. Any attempt to set a timer to run at a higher frequency will result in the timer being called every 100ms. Note that the frequency that the callback is called at is not exact.
send
Parameters:

· String: text to send to the server

Remarks:

Sends text back through the input chain. The text specified in the single parameter will be sent back through the client as if the user had entered the text into the input box, and hit Enter. send can operate recursively, up to 32 recursions. On the 33rd recursion, the text will be sent directly to the socket. This prevents stack overflows in the client.
sendln
Parameters:

· String: text to send to the server
Remarks:

Exactly the same as send(), except this function auto appends a CRLF.
setConfigValue
Parameters:

· String: Config key

· String: Config value
Returns:

· Nothing.
Remarks:

Sets a value in the config file. If the key does not exist, it is created. The config file is automatically saved as needed. Note that it is possible to update user preferences using this function. It is recommended that scripts use the naming convention Scriptname.Value, so that a script called “Test” setting the value “Foo” would use the key “Test.Foo”.
setIcon
Parameters:

· String, optional: Icon filename.
Returns:

· Nothing.
Remarks:

Change the DruinkClient window icon. If the icon filename is omitted, the icon is set back to default.
setPasswordInput
Parameters:

· Boolean: Should the input field be a password?

Returns:

· Nothing.
Remarks:

Changes the input field to be a password field. When in this state, all text typed is shown as black circles, and no input history is recorded.
setWindowTitle
Parameters:

· String, optional: New window title

Returns:

· Nothing.
Remarks:

Change the DruinkClient window title. If the new window title is omitted, the title is set back to default.
showWindow
Parameters:

· None

Returns:

· Nothing.

Remarks:

Brings the client window to the foreground. This function has no effect if the client window is already focused.

unregister_command
Parameters:

· String: callback function name

Remarks:

Un-registers a script callback registered with register_command. The callback function will not be called again unless it is re-registered.
unregister_event
Parameters:

· String: callback function name

Remarks:

Un-registers a script callback registered with register_event. The callback function will not be called again unless it is re-registered.
unregister_timer
Parameters:

· String: callback function name

Remarks:

Un-registers a script callback registered with register_timer. The callback function will not be called again unless it is re-registered.

Currsong Plugin Script Functions

getCurrSong
Parameters:

· Variable number of string: Parameters to fetch (See Remarks)
Returns:

· Current song parameter[s], or “” on error.
Remarks:

Get the user’s current song. Supports Winamp v1 to v5. The parameter to fetch can be one of the following:

· Number – Track number

· Artist – Artist

· Title – Track title

· Player – Player type, E.g. “Winamp”, “Windows Media Player”

· Length – Track length, in seconds

· Position – Current position in the track, in seconds

· Status – Status, e.g. “Playing”, “Stopped”, “Paused”

· Bitrate – Bitrate in kbps

· SampleRate – Sample rate in KHz

· Channels – Number of channels. Mono is 1 channel, Stereo is 2.
The function will return the same number of parameters as were passed to it, one for each parameter requested.








